Decomposing the Effects of Aging on Real Estate Prices using High-resolution Spatial Panel

Takuya Shimamura

Graduate School of Engineering, Kyushu University

Supervisor: Prof. Shunsuke Managi Director, Urban Institute, Kyushu University

XV World Conference of the Spatial Econometrics Association, Session 7-B. May 28, 2021.

USHU UNIVE

Contents

- 1. Background
- 2. Objective & contribution
- 3. Data & methodology
- 4. Decomposing the effects of aging
 4.1. Channel through aggregated demand in the entire market
 4.2. Channel through change in elderly individuals' behaviors
- 5. Conclusion
- 6. Appendix

Contents

1. Background

- 2. Objective & contribution
- 3. Data & methodology
- 4. Decomposing the effects of aging
 4.1. Channel through aggregated demand in the entire market
 4.2. Channel through change in elderly individuals' behaviors
- 5. Conclusion (summary and policy implication)
- 6. Appendix

1. Background (broad view)

- Global issue
 - Economic standard ↑ ⇒ aging speed ↑ (World Population Prospects, <u>https://population.un.org/wpp/</u>)
- The negative impacts of aging on economics
 - Slowdown of economic activities (Feyrer 2007; Feyrer 2008; Feyrer 2011; Jiandong 2016; Acemoglu & Restrepo 2017; Vargha et al. 2017; Aksoy et al. 2019)
 - Damage on social welfare (Razin et al. 2002; Flaherty et al. 2007; Zeng & Hesketh 2016)

1. Background (aging and real estate)

- The importance of real estate
 - Wealth effect: *individuals' mortgage* → *consumption*. (Aladangady 2017; Chen et al. 2020)
 - Household portfolio: biggest asset for household (Flavin & Yamashita 2002; Rosenthal & Strange 2004; Chetty et al. 2017)
 - 3. (impacts on corporations)

1. Background (outline of this study)

- Outline
 - Area:
 - Tokyo 23 Special Districts
 - Resolution:
 - *block*-level (\Rightarrow 430 × 430m mesh)
 - N = 2,845
 - Period:
 - 2000–2015
 - T = 16 (annually)
 - Explained variable:
 - Published land prices (PLPs) = appraisal prices

Tokyo 23 Special Districts

Contents

1. Background

2. Objective & contribution

- 3. Data & methodology
- 4. Decomposing the effects of aging
 4.1. Channel through aggregated demand in the entire market
 4.2. Channel through change in elderly individuals' behaviors
- 5. Conclusion
- 6. Appendix

2. Objective & contribution

1. Spatial panel: high-resolution × PLPs

- Handling biases of previous studies:
 - i. Aggregation bias
 - ii. Omitted variable bias
 - iii. Representativeness bias of spatio-temporal distribution
 - iv. Sample selection bias
 - v. Market friction

2. The detail analysis

- Decomposing:
 - i. Age composition effect
 - ii. Income effect & preference effect
- Zoning

2-1. high-resolution × PLPs

Biases

High-resolution

(i) Aggregation bias

Modifiable aerial unit program

(ii) Omitted variable bias

<u>PLPs</u>

(iv) Sample selection bias

(v)

Market friction

Search friction Bargaining friction

2-1 (i). high-resolution × PLPs

(i) Aggregate bias (Gehlke & Biehl 1934)

Aggregate panel (previous studies)

- country level (Takats 2012)
- city level (Hiller & Lerbs 2016)
- province level (Simo-Kengne 2019)

◆<u>High-resolution panel</u> (this paper)

- *Block*-level \Rightarrow 430 × 430m grid level
- Improvement of fixed effects (Cornwell & Trumbull 1994):
 - a. Accessibility (Glumac et al., 2019; Yuan et al. 2020)
 - b. Land-use zoning (Glaeser et al. 2005; Nichols et al. 2013; Tan et al. 2020)
 - c. Green space (Morancho 2003; Panduro & Veie 2013; Schlapfer et al. 2015)
 - d. Geographical constraints (Albert 2013; Hilber & Vermeulen 2016)
 - e. Brand value (Lakshman 1991)

2-1 (ii). high-resolution × PLPs

(ii) Omitted variable bias

Aggregate panel (previous studies)

• City level does not allow to capture central business district (CBD).

cf. bid rent theory (Alonso 1964; Fujita 1989)

◆<u>High-resolution panel</u> (this paper)

- *Block*-level \Rightarrow 430 × 430m grid level
- Dealing with omitted variable bias by structuralizing spatio-temporal CBD score.

CBD score in 2015

(Authors)

$$CBD_{it} = \ln\left(\sum_{s=1}^{S} \frac{passenger_{st}}{dist_{si}}\right)$$

s: station

- S: the total number of stations
- $dist_{si}$: the distance between station s and

centroid of *block i.*

 $passenger_{st}$: the average number of passengers at time t.

2-1 (iii). high-resolution × **PLPs**

(iii) Sample selection bias

(J.Heckman 1979; Berk 1983; Certo et al. 2016; Munafò et al. 2018)

Market prices (previous studies) :

Observed *only when transactions* occur

e.g., higher aging ratio will have

(a) higher house owing ratio and

(b) lower frequency of transactions.

≻Violates the objective to analyze the aging effect

◆Appraised prices (this paper) :

<u>Independent to transactions</u> \rightarrow **represent the properties**

2-1 (iv). high-resolution × **PLPs**

(iv) Market friction

(Quan & Quigley 1991; Kling et al. 2012; Han & Strange 2015; Piazzesi et al. 2020)

Market prices (previous studies) :

i. Information friction : information asymmetry

ii. Search friction : only one property

- iii.Bargaining friction : bargaining powers
- Market prices: market friction > fundamentals

Appraised prices (this paper) :
> less market friction.

2. Objective & contribution

1. Spatial panel: high-resolution × PLPs

- Handling biases of previous studies:
 - i. Aggregation bias
 - ii. Omitted variable bias
 - iii. Representativeness bias of spatio-temporal distribution
 - iv. Sample selection bias
 - v. Market friction

2. The detail analysis

- Decomposing:
 - i. Age composition effect
 - ii. Income effect & preference effect
- Zoning

2-2. Decomposing the effect of aging

- Aggregated demand in the entire market
 1-1. <u>age composition effect</u> (Takáts 2012; Hiller and Lerbs 2016)
 Negative impact
- 2. Changes in elderly individuals' behaviors
 - 2-1. <u>income effect</u> (Mankiw & Weil 1989; DiPasquale & Wheaton 1994)
 - income $\downarrow \Rightarrow$ budget constraint \Rightarrow demand $\downarrow \Rightarrow$ land prices \downarrow
 - 2-2. preference effect (no previous study)
 - change in preference \Rightarrow necessity of accessibility $\downarrow \Rightarrow$ land prices \downarrow

Controversial

Contents

- 1. Background
- 2. Objective & contribution
- 3. Data & methodology
- 4. Decomposing the effects of aging
 4.1. Channel through aggregated demand in the entire market
 4.2. Channel through change in elderly individuals' behaviors
- 5. Conclusion
- 6. Appendix

- 1. High-resolution dataset
 - a. Spatio-temporal kriging
 - To develop **high resolution spatial panel**, we apply spatio-temporal kriging.
- 2. Spatial panel (SAC) model
 - To cope with **spatial correlation**, we apply SAC (LeSage & Pace, 2009) model.

3-1. Variable description and data source

Variable description and data source Definition Variable Data Source Logarithmic inflation-corrected average published land prices per unit area Authors' calculation based Real land price p on MLITT⁽¹⁾ [JPY/area] e-Stat⁽²⁾ Logarithmic ratio of residentials aged 65+ to residential aged 15-64 [%] ODR Old dependency ratio Logarithmic inflation corrected average income per household [JPY/household] ESRI Japan Inc. ⁽³⁾, TMG ⁽⁴⁾ Real purchasing power y Authors' calculation based Central business district Logarithmic central business district score [person/distance] CBD on MLITT⁽¹⁾ and TMG⁽⁴⁾ e-Stat⁽²⁾ Working age population Logarithmic the number of residentials population aged 15–64 [person] pop Logarithmic ratio of residentials aged 0–14 to residential aged 15–64 [%] e-Stat⁽²⁾ CDR Child dependency ratio Logarithmic ration of residentials who live in the owing houses to residential who Home ownership ratio e-Stat⁽²⁾ HOR do not [%] Dummy variable whether there was any construction of buildings with floor 5-9 Low building supply One of a kind Inc.⁽⁵⁾ F5-9 in time *t*-1 Dummy variable whether there was any construction of buildings with floor 10-14 One of a kind Inc. ⁽⁵⁾ *F10–14* Midlle building supply in time *t*-1 Dummy variable whether there was any construction of buildings with floor 15+ in One of a kind Inc. ⁽⁵⁾ High building supply F15 time t-1 ⁽¹⁾ Ministry of Land, Infrastructure, Transport and Tourism (<u>https://nlftp.mlit.go.jp/ksj/index.html</u>)

⁽²⁾ Protal Site of Official Statistics of Japan (<u>https://www.e-stat.go.jp/gis</u>)

⁽³⁾ ESRI Japan Inc. (<u>https://www.esrij.com/</u>)

⁽⁴⁾ Statistic Division, Bureau of General Aaffairs, Tokyo Metoropolitan Government (<u>https://www.toukei.metro.tokyo.lg.jp/index.htm</u>)

⁽⁵⁾ Mansion Review, One of a kind Inc. (<u>https://www.mansion-review.jp/</u>)

3-1. Descriptive statistics

Descriptive statistics.												
	Mean	St. dev.	Min	Max	CD test	CIPS test	N×T					
Δp	-0.0015	0.0553	-0.2215	0.3225	7171.66***	-1.90***	2,785×15					
∆рор	0.0094	0.0385	-0.8635	2.7248	111.13***	-0.94	2,785×15					
ΔCDR	0.0039	0.0535	-2.202	2.5576	274.71***	-1.10	2,785×15					
ΔODR	0.0220	0.0407	-0.9045	1.0304	261.07***	-0.79	2,785×15					
Δy	-0.0068	0.0591	-0.6318	0.5654	4986.77***	-2.47***	2,785×15					
ΔHOR	0.0034	0.0584	-2.3979	4.6092	1165.82***	-0.98	2,785×15					
ΔCBD	0.0132	0.0168	-0.0272	0.2215	7395.45***	-1.63**	2,785×15					

CD is cross-sectional dependence test in panel time-series data (Pesaran 2021). The null hypothesis of CD test is no cross-sectional dependence. CIPS is cross-sectional dependence augmented IPS test (Pesaran, 2007). Since CIPS is based on cross-sectional augmented ADF (CADF), the null hypothesis is non-stationary. All CIPS test are performed without an intercept and a linear trend, and with a lag. The relevant lower 1%, 5%, and 10% level critical values are -1.62, -1.51, and -1.43, respectively, assuming (N,T) = (200, 15). This is because Pesaran (2007) provides the table II(a) critical values on p.279, but maximum N is 200. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

3-1. Correlation between variables

Correlation between variables.

	Δp	∆рор	$\triangle CDR$	ΔODR	Δy	∆HOR	$\triangle CBD$	F5–9	F10–14	F15
Δp	_	_	_	_	_	_	_	_	_	_
Δpop	0.009	_	_	_	_	_	_	_	_	_
ΔCDR	0.048	0.298	_	_	_	_	_	_	_	_
ΔODR	-0.052	-0.384	0.037	_	_	_	_	_	_	_
Δy	0.377	-0.016	0.003	-0.007	_	_	_	_	_	_
∆HOR	-0.046	0.093	0.204	0.185	0.061	_	_	_	_	_
ΔCBD	0.545	0.034	0.045	-0.027	0.265	-0.022	_	_	_	-
F5–9	0.031	0.053	-0.004	-0.052	0.026	0.003	0.020	_	_	_
F10–14	0.024	0.133	-0.004	-0.134	0.035	-0.019	0.040	0.064	_	-
F15	0.043	0.132	0.032	-0.089	0.024	0.003	0.031	0.021	0.083	_

3-2. Spatio-temporal kriging

Example in Setagaya-ward (one of the 23 special districts)

Validity of Kriging

Kriging model vs. non-kriging model

	M1:	M2:	M3:
	Kriging model (generic model)	Non-kriging model	Kriging model with limited blocks
	(generie mouel)		With mintea blocks
Age composition effect	0	0	0
Income effect	×	0	0
Preference effect	0	×	×
Total number of blocks	2,845	611	611

"°" denotes the effect is significantly positive, "×" denotes the effect is rejected. Colored in red refers to the different result from the kriging model (M1).

3-3. Spatial econometrics model

• Generic model: SAC, two-way fixed effect

 $\Delta p_{it} = \lambda W \Delta p_{it} + \beta_1 \Delta ODR_{it}$ $+ \beta_2 (\Delta ODR_{it} \times \Delta y_{it}) + \beta_3 (\Delta ODR_{it} \times \Delta CBD_{it})$ $+ \mathbf{Z}'_{it} \mathbf{\gamma}_k + \mu_i + \varphi_t + u_{it}$

with
$$u_{it} = \rho W u_{it} + \varepsilon_{it}$$
, $\varepsilon_{it} \sim N(0, \sigma_i^2)$

where:

 $Z'_{it} = (\Delta pop_{it}, \Delta CDR_{it}, \Delta y_{it}, \Delta CBD_{it}, \Delta HOR_{it}, \Delta F5-9_{it}, \Delta F10-14_{it}, \Delta F15_{it})$ *W*: row-standardized distance-based spatial weight matrix with buffer

cf. Takáts (2012): country level, non-spatial panel, pooled OLS (with controlling time trend). Hiller and Lerbs (2016): city-level, SAC, two-ways fixed.

Contents

- 1. Background
- 2. Objective & contribution
- 3. Data & methodology
- 4. Analysis
 - 4.1. Channel through aggregated demand in the entire market4.2. Channel through change in elderly individuals' behaviors
- 5. Conclusion
- 6. Appendix

Hypothesis 1-1. age composition effect

Hypothesis 1-1. the theory

• Overlapping-generations model (OLG) (Samuelson 1958; P. A. Diamond 1956; Takáts 2012)

Negative impact: aging $\uparrow \Rightarrow$ real estate price growth \downarrow

Hypothesis 1-1. the validation

• $\triangle ODR$: negative.

Result 1-1. age composition effect

	all	resi	resi (low)	resi (mid)	resi (others)	com
Total effects						-
Δрор	-0.0532***	-0.0507	0.0134	-0.0908***	-0.0514*	-0.0185
	(0.0148)	(0.0350)	(0.0540)	(0.0349)	(0.0274)	(0.0205)
ΔCDR	0.0209**	0.0639***	-0.0508	0.0826***	0.0058	0.0136*
	(0.0099)	(0.0207)	(0.0314)	(0.0232)	(0.0147)	(0.0082)
AODR	0.0085	-0.1486***	-0.0777***	-0.1534***	-0.0624**	-0.0084
	(0.0133)	(0.0275)	(0.0307)	(0.0277)	(0.0278)	(0.0186)
Δy	0.0740***	0.0662***	0.0911***	0.0504***	0.0556***	0.0502***
	(0.0125)	(0.0151)	(0.0175)	(0.0162)	(0.0153)	(0.0111)
ΔMHR	-0.0140	-0.0684***	-0.0578*	-0.0271	-0.0222	0.0077
	(0.0090)	(0.0211)	(0.0328)	(0.0179)	(0.0173)	(0.0129)
ΔCBD	0.5625***	1.5816***	2.7471***	1.9680***	1.2229***	0.3634***
	(0.1320)	(0.2330)	(0.3428)	(0.2969)	(0.1725)	(0.0965)
Δs (F 5-9)	-0.0004	0.0026	-0.0033	0.0022	0.0005	-0.0032
	(0.0014)	(0.0020)	(0.0020)	(0.0023)	(0.0020)	(0.0021)
Δs (F 10-14)	0.0051***	0.0053*	-0.0064	-0.0007	0.0036	0.0034*
	(0.0017)	(0.0031)	(0.0043)	(0.0032)	(0.0025)	(0.0018)
Δs (F 15+)	0.0033	0.0137**	0.0226	0.0126*	-0.0126***	0.0015
	(0.0032)	(0.0063)	(0.0162)	(0.0072)	(0.0050)	(0.0037)
Regression diagnostisc	. ,	· · ·		· · · ·	. ,	
R-squared	0.9635	0.9800	0.9890	0.9839	0.9640	0.9474
N	2784	1773	577	460	338	515
Т	15	15	15	15	15	15
lambda	0.8728***	0.9378***	0.9115***	0.8818***	0.7579***	0.7012***
rho	0.254***	-0.2544***	-0.2708***	-0.1711***	-0.2014***	-0.0058
cutoff	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m
PCD	-1.614	-1.802*	-0.167	-1.436	-0.769	-1.969**
IPS	-147.078***	-131.056***	-73.551***	-63.433***	-53.417***	-58.815***
CIPS	-2.354***	-2.510***	-2.687***	-2.552***	-2.593***	-2.514***

(Authors)

→ *ODR* is **negative** in **residential area**.

Hypothesis 2-1. income effect

<u>Hypothesis</u> : aging → income \Downarrow → demand \Downarrow → land price \Downarrow <u>Verification</u> : whether the coefficient of the interaction term of ΔODR and Δy become positive.

- <u>Line(0)</u> : $\beta_{\Delta ODR}$ is negative
- <u>Line(1)</u> : parallel translation from line(0) as the magnitude of $\beta_{\Delta y}$.
- <u>Line(1')</u> : **improvement** as the magnitude of $\beta_{\Delta ODR \times \Delta y}$
- → with higher income, elderly residents can live in higher land price area.
- \therefore they face **<u>budget constraint</u>**.

Hypothesis 2-2. preference effect

<u>Hypotheses</u> : aging→ change in preference → lection cheaper area <u>Verification</u> : whether the coefficient of the interaction term of ΔODR and ΔCBD become negative.

(+)

- <u>Line(0)</u> : $\beta_{\Delta ODR}$ is negative
- <u>Line(1)</u> : parallel translation from line(0) as the magnitude of $\beta_{\Delta y}$.
- <u>Line(1')</u> : **decline** as the magnitude of $\beta_{\Delta ODR \times \Delta CBD}$
- → with aging, they decline the preference to better accessibility compared with when young.
- ∴ As a result, elderly residents select <u>cheaper area</u>.

(+)

(-)

(-)

Result 2-1, 2-2. income & preference effect

	income					CBD						the nearest station						
		high			low			high			low			close			far	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Total effects																		
∆рор	-0.1467***	-0.1500***	-0.1475***	0.1563***	0.1585***	0.1563***	-0.0924**	-0.0961**	-0.0943**	0.1067**	0.1025**	0.1060**	-0.0821***	-0.0799***	-0.0825***	-0.0653*	-0.0727*	-0.0659*
	(0.0388)	(0.0377)	(0.0374)	(0.0361)	(0.0401)	(0.0360)	(0.0455)	(0.0412)	(0.0427)	(0.0431)	(0.0476)	(0.0453)	(0.0310)	(0.0307)	(0.0313)	(0.0390)	(0.0379)	(0.0383)
ΔCDR	0.0925***	0.0935***	0.0926***	-0.0658**	-0.0690**	-0.0688***	0.0747***	0.0756***	0.0752***	-0.0609*	-0.0633*	-0.0641*	0.0755***	0.0749***	0.0758***	0.0058	0.0031	0.0008
	(0.0217)	(0.0224)	(0.0216)	(0.0269)	(0.0270)	(0.0242)	(0.0238)	(0.0211)	(0.0241)	(0.0344)	(0.0334)	(0.0341)	(0.0198)	(0.0187)	(0.0194)	(0.0267)	(0.0272)	(0.0276)
∆ODR	-0.1061***	-0.1094***	-0.1084***	-0.0862***	-0.0852***	-0.0865***	-0.1806***	-0.1877***	-0.1870***	-0.0402	-0.0424	-0.0397	-0.1560***	-0.1601***	-0.1613***	-0.0937***	-0.1008***	-0.0951***
	(0.0306)	(0.0308)	(0.0282)	(0.0286)	(0.0286)	(0.0294)	(0.0366)	(0.0375)	(0.0342)	(0.0296)	(0.0271)	(0.0304)	(0.0251)	(0.0275)	(0.0258)	(0.0248)	(0.0247)	(0.0243)
Δy	<mark>0.0726***</mark>	0.0720***	0.0737***	0.0218	0.0172	0.0192	<mark>0.0603***</mark>	0.0612***	0.0621***	0.0629**	0.0614**	0.0591**	<mark>0.0586***</mark>	0.0622***	0.0608***	0.1023***	0.1017***	0.1012***
	<mark>(0.0164)</mark>	(0.0156)	(0.0166)	(0.0220)	(0.0198)	(0.0224)	<mark>(0.0159)</mark>	(0.0161)	(0.0171)	(0.0259)	(0.0272)	(0.0266)	<mark>(0.0128)</mark>	(0.0135)	(0.0132)	(0.0148)	(0.0157)	(0.0164)
∆CBD	<mark>2.1580***</mark>	2.1406***	2.1375***	0.6034***	0.7557***	0.7448***	<mark>1.4773***</mark>	1.4529***	1.4504***	1.5974***	1.8307***	1.8513***	<mark>1.6299***</mark>	1.6064***	1.6102***	2.0068***	2.0839***	2.1351***
	<mark>(0.3129)</mark>	(0.2900)	(0.3228)	(0.2129)	(0.2121)	(0.2255)	<mark>(0.2693)</mark>	(0.2713)	(0.2646)	(0.3637)	(0.4091)	(0.3993)	(0.1927)	(0.1889)	(0.1963)	(0.2536)	(0.2722)	(0.2622)
ΔODR × Δy	0.0650		0.1303	-0.7429**		-0.3031	-0.0637		0.0953	-0.0266		0.4098	-0.2549		-0.1166	1.0421***		1.5495***
	(0.2654)		(0.2791)	(0.3889)		(0.3705)	(0.3014)		(0.2941)	(0.3504)		(0.3819)	(0.2149)		(0.2177)	(0.3335)		(0.3728)
$\Delta ODR \times \Delta CBD$		-0.9458	-1.1289		-4.4763***	-4.2090***		-2.7378**	-2.8530*		-4.3842***	-4.8142***		-2.7458**	-2.5976**		-3.0757***	-4.6006***
		(1.2293)	(1.4265)		(1.0791)	(1.0784)		(1.3292)	(1.4925)		(1.2581)	(1.2508)		(1.0971)	(1.0170)		(1.0612)	(1.0331)
control vari.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Regression diag	nostics																	
lambda	0.9076***	0.9075***	0.9076***	0.907***	0.9064***	0.9065***	0.9076***	0.9074***	0.9074***	0.9372***	0.9372***	0.937***	0.8688***	0.8686***	0.8686***	0.9358***	0.9357***	0.9353***
rho	-0.1537***	-0.1539***	-0.154***	-0.441***	-0.4393***	-0.4392***	-0.1635***	-0.1647***	-0.1646***	-0.3447***	-0.3428***	-0.343***	-0.2591***	-0.2598***	-0.2599***	-0.4637***	-0.4624***	-0.4621***
R ²	0.9802	0.9802	0.9802	0.9777	0.9778	0.9778	0.9773	0.9773	0.9773	0.9837	0.9838	0.9838	0.9742	0.9742	0.9742	0.9872	0.9872	0.9872
Ν	868	868	868	873	873	873	883	883	883	889	889	889	881	881	881	872	872	872
Т	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
cutoff	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m	1000 m
PCD	0.964	0.988	1.000	-2.179**	-2.188**	-2.185**	-1.147	-1.202	-1.177	-1.885*	-1.864*	-1.885*	0.663	0.626	0.640	1.029	1.165	1.089
IPS	-88.454***	-88.483***	-88.481***	-94.471***	-94.412***	-94.413***	-93.343***	-93.363***	-93.372***	-98.155***	-98.125***	-98.158***	-90.287***	-90.391***	-90.398***	-100.828***	-100.920***	-100.856***
CIPS	-2.408***	-2.409***	-2.411***	-2.880***	-2.915***	-2.904***	-2.420***	-2.416***	-2.423***	-2.629***	-2.622***	-2.625***	-2.422***	-2.417***	-2.418***	-2.795***	-2.780***	-2.793***

(Authors)

KYUSHU UNIVERSITY

Result 2-1, 2-2. income & preference effect

- Result 2-1. income effect
 - $\beta_{\Delta ODR \times \Delta y}$: insignificant or **negative** (against to the hypothesis)
- Result 2-2. preference effect
 - $\beta_{\Delta ODR \times \Delta CBD}$: **positive** (consist with the hypothesis)
 - \therefore The cause of negative impact of aging:
 - > budget constraints
 prefer city outskirts where price growth is slower

Contents

- 1. Background
- 2. Objective & contribution
- 3. Methodology
- 4. Analysis

4.1. Channel through aggregated demand in the entire market4.2. Channel through change in elderly individuals' behaviors

5. Conclusion

6. Appendix

Summary

- 1. Aggregated demand in the entire market
 1-1) age composition effect (Takáts 2012; Hiller and Lerbs 2016)
 Negative impact
- 2. Changes in elderly individuals' behaviors
 - . income effect (Mankiw & Weil 1989; DiPasquale & Wheaton 1994)
 - income $\downarrow \Rightarrow$ budget constraint
 - \Rightarrow demand $\downarrow \Rightarrow$ land prices \downarrow
 - 2-2 preference effect (no previous study)
 - change in preference \Rightarrow necessity of accessibility \downarrow
 - \Rightarrow land prices \downarrow

Controversial

References (main) -1-

- Aiken, L. S., and West, S. G. (1991), *Multiple regression: Testing and interpreting interactions*, London, UK: Sage Publications, Ltd.
- Alonso, W. (1964), Location and Land Use: Toward a General Theory of Land Rent, Cambridge: Harvard University Press.
- Ando, A., and Modigliani, F. (1963), "The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests," *American Economic Review*, 53, 55–84.
- Anselin, L. (1988), Spatial Econometrics: Methods and Models, Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-015-7799-1.
- Arnberger, A., Allex, B., Eder, R., Ebenberger, M., Wanka, A., Kolland, F., Wallner, P., and Hutter, H. P. (2017), "Elderly resident's uses of and preferences for urban green spaces during heat periods," *Urban Forestry and Urban Greening*, Elsevier GmbH., 21, 102–115. https://doi.org/10.1016/j.ufug.2016.11.012.
- Banzhaf, H. S., Mickey, R., and Patrick, C. (2021), "Age-based property tax exemptions," *Journal of Urban Economics*, Elsevier Inc., 121, 103303. https://doi.org/10.1016/j.jue.2020.103303.
- Clark, W. A. V., and Avery, K. L. (1976), "The Effects of Data Aggregation in Statistical Analysis," *Geographical Analysis*, 8, 428–438. https://doi.org/10.1111/j.1538-4632.1976.tb00549.x.
- Cornwell, C., and Trumbull, W. N. (1994), "Estimating the Economic Model of Crime with Panel Data," *The Review of Economics and Statistics*, 76, 360–366.
- Diamond, P. (1965), "National debt in a neoclassical growth model," American Economic Review, 41, 1126–1150.
- Diewert, W. E., and Shimizu, C. (2016), "Hedonic regression models for Tokyo condominium sales," *Regional Science and Urban Economics*, Elsevier B.V., 60, 300–315. https://doi.org/10.1016/j.regsciurbeco.2016.08.002.
- DiPasquale, D., and Wheaton, W. C. (1994), "Housing market dynamics and the future of housing prices," *Journal of Urban Economics*. https://doi.org/10.1006/juec.1994.1001.
- Eichholtz, P., and Lindenthal, T. (2014), "Demographics, human capital, and the demand for housing," *Journal of Housing Economics*, Elsevier Inc., 26, 19–32. https://doi.org/10.1016/j.jhe.2014.06.002.
- Elinder, M., Erixson, O., and Waldenström, D. (2018), "Inheritance and wealth inequality: Evidence from population registers," *Journal of Public Economics*, The Author(s), 165, 17–30. https://doi.org/10.1016/j.jpubeco.2018.06.012.
- Engelhardt, G. V., and Poterba, J. M. (1991), "House prices and demographic change: Canadian evidence," *Regional Science and Urban Economics*, 21, 539–546.
- Favero, C. A., Gozluklu, A. E., and Tamoni, A. (2011), "Demographic trends, the dividend-price ratio, and the predictability of long-run stock market returns," *Journal of Financial and Quantitative Analysis*, 46, 1493–1520. https://doi.org/10.1017/S0022109011000329.
- Fesselmeyer, E., and Seah, K. Y. S. (2018), "The effect of localized density on housing prices in Singapore," *Regional Science and Urban Economics*, Elsevier, 68, 304–315. https://doi.org/10.1016/j.regsciurbeco.2017.12.002.
- Flavin, M., and Yamashita, T. (2002), "Owner-Occupied Housing and the Composition of the Household Portfolio," *American Economic Review*, 92, 345–362.
- Fujita, M. (1989), Urban Economic Theory: Land Use and City Size, 1989, (C. U. Press, ed.). https://doi.org/https://doi.org/10.1017/CBO9780511625862.

References (main) -2-

- Gehlke, C. E., and Biehl, K. (1934), "Certain Effects of Grouping upon the Size of the Correlation Coefficient in Census Tract Material," *Journal of the American Statistical Association*, 29, 169–170. https://doi.org/10.1080/01621459.1934.10506247.
- Glaeser, E. L., Gyourko, J., and Saiz, A. (2008), "Housing supply and housing bubbles," *Journal of Urban Economics*, 64, 198–217. https://doi.org/10.1016/j.jue.2008.07.007.
- Glumac, B., Herrera-Gomez, M., and Licheron, J. (2019), "A hedonic urban land price index," *Land Use Policy*, Elsevier, 81, 802–812. https://doi.org/10.1016/j.landusepol.2018.11.032.
- Green, R., and Hendershott, P. H. (1996), "Age, housing demand, and real house prices," *Regional Science and Urban Economics*, 26, 465–480. https://doi.org/10.1016/0166-0462(96)02128-X.
- Green, R. K., and Lee, H. (2016), "Age, demographics, and the demand for housing, revisited," *Regional Science and Urban Economics*, Elsevier, 61, 86–98. https://doi.org/10.1016/j.regsciurbeco.2016.09.005.
- Halac, M. (2012), "Relational Contracts and the Value of Relationships," American Economic Review, 102, 750–779.
- Heckman, J. J. (1979), "Sample Selection Bias as a Specification Error," *Econometric*, 47, 153–161.
- Hilber, C. A. L., and Vermeulen, W. (2016), "The Impact of Supply Constraints on House Prices in England," *The Economic Journal*, 126, 358–405. https://doi.org/https://doi.org/10.1111/ecoj.12213.
- Hiller, N., and Lerbs, O. W. (2016), "Aging and urban house prices," *Regional Science and Urban Economics*, Elsevier B.V., 60, 276–291. https://doi.org/10.1016/j.regsciurbeco.2016.07.010.
- Holly, S., Pesaran, M. H., and Yamagata, T. (2010), "A spatio-temporal model of house prices in the USA," *Journal of Econometrics*, Elsevier B.V., 158, 160–173. https://doi.org/10.1016/j.jeconom.2010.03.040.
- Im, K. S., Pesaran, M. H., and Shin, Y. (2003), "Testing for unit roots in heterogeneous panels," *Journal of Econometrics*, 115, 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7.
- Kapoor, M., Kelejian, H. H., and Prucha, I. R. (2007), "Panel data models with spatially correlated error components," *Journal of Econometrics*, 140, 97–130. https://doi.org/10.1016/j.jeconom.2006.09.004.
- Kiyotaki, N., and Moore, J. (1997), "Credit Cycles," Journal of Political Economy, 105, 211-248.
- Krishnamurthi, L., and Raj, S. P. (1991), "An Empirical Analysis of the Relationship Between Brand Loyalty and Consumer Price Elasticity," *Marketing Science*, 10, 91–183. https://doi.org/10.1287/mksc.10.2.172.
- LeSage, J., and Pace, R. K. (2009), Introduction to spatial econometrics, Introduction to Spatial Econometrics, Boca Raton, FL: Taylor & Francis Ltd. https://doi.org/10.1111/j.1467-985x.2010.00681_13.x.
- Maas, J., Verheij, R. A., Groenewegen, P. P., De Vries, S., and Spreeuwenberg, P. (2006), "Green space, urbanity, and health: How strong is the relation?," *Journal of Epidemiology and Community Health*, 60, 587–592. https://doi.org/10.1136/jech.2005.043125.
- Mankiw, N. G., and Weil, D. N. (1989), "The baby boom, the baby bust, and the housing market," *Regional Science and Urban Economics*, 19, 235–258. https://doi.org/10.1016/0166-0462(89)90005-7.
- Modigliani, F., and Brumberg, R. H. (1954), "Utility Analysis and the Consumption Function: An Interpretation of Cross-Section Data," in *Post-Keynesian Economics*, ed. K. K. Kurihara, New Brunswick: Rutgers University Press, pp. 388–436.

References (main) -3-

- Oikarinen, E., Bourassa, S. C., Hoesli, M., and Engblom, J. (2018), "U.S. metropolitan house price dynamics," *Journal of Urban Economics*, Elsevier, 105, 54–69. https://doi.org/10.1016/j.jue.2018.03.001.
- Pesaran, M. H. (2007), "A Simple Panel Unit Root Test in the Presence of Cross-section dependence," *Journal of Applied Econometrics*, 22, 265–312. https://doi.org/10.1002/jae.951.
- Pesaran, M. H. (2021), "General diagnostic tests for cross-sectional dependence in panels," *Empirical Economics*, Springer Berlin Heidelberg, 60, 13–50. https://doi.org/10.1007/s00181-020-01875-7.
- Quan, D. C., and Quigley, J. M. (1991), "Price formation and the appraisal function in real estate markets," *The Journal of Real Estate Finance and Economics*, 4, 127–146. https://doi.org/10.1007/BF00173120.
- Rossi, P. H. (1955), Why families move: A study in the social psychology of urban residential mobility, Glencoe: The Free Press.
- Rossi, P. H., and Shlay, A. B. (1982), "Residential Mobility and Public Policy Issues: 'Why Families Move' Revisited," *Journal of Social Issues*, 38, 21–34. https://doi.org/10.1111/j.1540-4560.1982.tb01768.x.
- Samuelson, P. A. (1958), "An Exact Consumption-Loan Model of Interest with or without the Social Contrivance of Money," *Journal of Political Economy*, 66, 467–482.
- Schläpfer, F., Waltert, F., Segura, L., and Kienast, F. (2015), "Valuation of landscape amenities: A hedonic pricing analysis of housing rents in urban, suburban and periurban Switzerland," *Landscape and Urban Planning*, Elsevier B.V., 141, 24–40. https://doi.org/10.1016/j.landurbplan.2015.04.007.
- Simo-Kengne, B. D. (2019), "Population aging, unemployment and house prices in South Africa," *Journal of Housing and the Built Environment*, Springer Netherlands, 34, 153–174. https://doi.org/10.1007/s10901-018-9624-3.
- Takáts, E. (2012), "Aging and house prices," Journal of Housing Economics, 21, 131–141. https://doi.org/10.1016/j.jhe.2012.04.001.
- Tan, Y., Wang, Z., and Zhang, Q. (2020), "Land-use regulation and the intensive margin of housing supply," *Journal of Urban Economics*, Elsevier Inc., 115, 103199. https://doi.org/10.1016/j.jue.2019.103199.
- Tuson, M., Yap, M., Kok, M. R., Boruff, B., Murray, K., Vickery, A., Turlach, B. A., and Whyatt, D. (2020), "Overcoming inefficiencies arising due to the impact of the modifiable areal unit problem on single-Aggregation disease maps," *International Journal of Health Geographics*, BioMed Central, 19, 1–18. https://doi.org/10.1186/s12942-020-00236-y.
- de Vries, S., Verheij, R. A., Groenewegen, P. P., and Spreeuwenberg, P. (2003), "Natural environments Healthy environments? An exploratory analysis of the relationship between greenspace and health," *Environment and Planning A*, 35, 1717–1731. https://doi.org/10.1068/a35111.
- Yuan, F., Wei, Y. D., and Wu, J. (2020), "Amenity effects of urban facilities on housing prices in China: Accessibility, scarcity, and urban spaces," *Cities*, Elsevier, 96, 102433. https://doi.org/10.1016/j.cities.2019.102433.
- Zhifeng, W., and Yin, R. (2021), "The influence of greenspace characteristics and building configuration on depression in the elderly," *Building and Environment*, Elsevier Ltd, 188, 107477. https://doi.org/10.1016/j.buildenv.2020.107477.

Thank you for your attention.

Development processes of panel data

i: *block-level*; *i*': ward level; *j*: PLP observation points; *j*': 100 × 100 m grids; *s*: stations in the study area; *t*: 2000–2015; *t*': 2000, 2005, 2010, 2013, and 2015; *t*'': 2000, 2005, 2010, and 2015; *block*: block polygons

Validity of Kriging

Kriging model vs. non-kriging model

	M1:	M2:	M3:
	Kriging model (generic model)	Non-kriging model	Kriging model with limited blocks
	(generie mouel)		With mintea blocks
Age composition effect	0	0	0
Income effect	×	0	0
Preference effect	0	×	×
Total number of blocks	2,845	611	611

"°" denotes the effect is significantly positive, "×" denotes the effect is rejected. Colored in red refers to the different result from the kriging model (M1).

Policy implication

- income effect (nonsignificant)
 - Increased income dose not push up land price.
 - *Aged-based* policies (rent subsidies, property tax exemption) are less effective. *they work for all generation *equally*.
- preference effect
 - Elderly residents have less preference of **CBD**.
 - Under the aging society, improving accessibility is less effective. Other measurement like **greening** may work well.

• inheritance effect

- Bequest motive can mitigate the negative effect of aging.
- **Lower inheritance tax** reinforces bequest motive, then, may mitigate the negative effect of aging.

Map of study area and land-use zooning

(Authors)

40

Land price

Old dependency ratio

Working Age population

Child dependency ratio

Child dependency ratio in Tokyo 2000

0,7.79] (7.79,9.27] (9.27,10.2] (10.2,11] (11,11.8) 11.8,12.4] (12.4,13.1] (13.1,13.7] (13.7,14.3] (14.3,14.9] (14.9,15.6] (15.6,16.3] (16.3,17] (17,17.9] (17.9,18.8] (18.8,19.8] (19.8,21] (21,22.4] (22.4,24.6] (24.6,59.4]

Household income

CBD score

Score of central business district in Tokyo 2000 CBD score [2.5,3.29] (3.29,3.53] (3.53,3.74] (3.74,3.93] (3.93,4.12) (4.12,4.32] (4.32,4.54] (4.54,4.8] (4.8,5.09] (5.09,5.42] (5.42,5.8) (5.8,6.23] (6.23,6.7] (6.7,7.24] (7.24,7.82] (7.82,8.46] (8.46,9.19] (9.19,10] (10,11.2] (11.2,35.5]

Home ownership ratio

House owing ratio in Tokyo 0,22.9] (22.9,29.1] (29.1,32.8] (32.8,35.6] (35.6,37.8] (37.8,39.7] (39.7,41.6] (41.6,43.3] (43.3,44.9] (44.9,46.5] (46.5,48.2] (48.2,49.9] (49.9,51.8) (51.8,53.7] (53.7,55.8] (55.8,58.3] (58.3,61.2] (61.2,64.9] (64.9,70.1] (70.1,100]

45

Spatio-temporal variogram : structuralizing variance-covariance matrix

Estimation model of variogram

exponential model

$$\gamma(\mathbf{h}, t) = \begin{cases} t_0 + t_1 \left(1 - e^{-\frac{\|\mathbf{h}\|}{t_2}} \right), & \|\mathbf{h}\| > 0\\ 0, & \|\mathbf{h}\| = 0 \end{cases}$$

$$\gamma(\mathbf{h}, t) = \begin{cases} t_0 + t_1, & \|\mathbf{h}\| > t_2 \\ t_0 + t_1 \left[\frac{1}{2} \frac{\|\mathbf{h}\|}{t_2} - \frac{3}{2} \left(\frac{\|\mathbf{h}\|}{t_2} \right)^3 \right], & 0 < \|\mathbf{h}\| \le t_2 \\ 0, & \|\mathbf{h}\| = 0 \end{cases}$$

Validation of accuracy

5-fold cross-validation

④ Repeat 1^{3} for 5 times and calculate root mean square errors (RMSE).

Exponential RMSE (eRMSE)

$$eRMSE = \exp\left(\sqrt{\sum_{i=1}^{N} \frac{(\ln(\hat{y}_i) - \ln(y_i))^2}{N}}\right)$$

 y_i : observation, \hat{y}_i : interpolated value

When eRMSE = 1.0, there are no errors. When eRMSE = 1.1, there is 10% of errors.

Apply for land prices

Residential zone

Commercial zone

Land use zones

Examples of buildings	Category I exclusively low-rise resi- dential zone	Category II exclusively low-rise resi- dential zone	Category I mid/high-rise oriented resi- dential zone	Category II mid/high-rise oriented resi- dential zone	Category I residential zone	Category II residential zone	Quasi- residential zone	Neighbor- hood com- mercial zone	Commer- cial zone	Quasi- industrial zone	Industrial zone	Exclu- sively industrial zone	Areas with no land- use zone designa- tion (Urbanization Control Areas are excluded)
Houses, Houses with other small scale function(store, office, etc.)													
Kindergartens, Schools (Elementary, Junior High, Senior High)													
Shrines, Temples, Churches, Clinics													
Hospitals, Universities													
Stores (mainly selling dairy commodities)/Restaurants with floor space of 150m ² max. on the first or second floor (excluding %)												D	
Stores/Restaurants with floor space of 500m² max. on the first or second floor $(\text{excluding} \circledast)$												D	
Stores/Restaurants not specified above (excluding %)				Α	В								
Offices, etc. not specified above				Α	В								
Hotels,Inns					В								
Karaoke boxes (excluding %)													
Theaters, Movie theaters (excluding %)							С						
*Theaters, Movie theaters, Stores, Restaurants, Amusement facilities and so on, with more than 10,000m ² of floor area													
Bathhouses with private rooms													
Independent garage with floor space of 300m ² max. on the first or second floor													
Warehouse of warehousing company, Independent garage of other types than specified above													
Auto repair shop					E	E	F	G	G				
Factory with some possibility of danger or environmental degradation													
Factory with strong possibility of danger or environmental degradation													

Note A : Must not be built on the third floor or higher. Must not exceed a floor area of 1,500m².

B : Must not exceed a floor area of 3,000m².

C : Audience seating floor area must not exceed 200m².

D : Stores and restaurants must not be built

E : Floor area must not exceed 50m².

F : Floor area must not exceed 150m².

G: Floor area must not exceed 300m².

(City Planning Division, City and Regional Development Bureau, Ministry of Land, Infrastructure and Transport, 2003)

Dividing into cases

Dividing into cases

Hypothesis 1-1. age composition effect

Based on Overlapping-generations (OLG) model, the negative effect of aging on real estate is proofed (Samuelson 1958; P. A. Diamond 1956; Takáts 2012)_o

- <u>Youth (t)</u> : earing income (y_t) . y_t is used for consumption when young (c_t^y) and saving (s_t^y) .
- <u>Old (t+1)</u> : consumption in old (c_{t+1}^o) is payed from saving (c_t^y) and its interest

$$c_t^{y} + s_t = y_t$$

$$c_{t+1}^{o} = (1 + r_{t+1})s_t$$

• <u>Utility (U)</u> : individuals maximize the utility through consumptions when young and old.

$$\max_{\substack{c_t^y, c_{t+1}^o \\ \text{s.t. } y_t = c_t^y + \frac{1}{1+\delta} ln(c_{t+1}^o)} U = ln(c_t^y) + \frac{1}{1+\delta} ln(c_{t+1}^o)$$

~~~ (omitted) ~~~

 $\cdot$  The growth of asset prices is explained by economic and population growth.

$$1 + r_t = \frac{p_{t+1}}{p_t} = (1 + g_t) \left( 1 + d_t^{y} \right)$$



### Hypothesis 1-1. age composition effect

• Old dependency ratio  $(ODR_t)$  is equal to the inverse of population growth (1 + d).

$$ODR_{t} = \frac{n_{t-1}^{y}}{n_{t}^{y}} = \frac{n_{t-1}^{y}}{n_{t-1}^{y}(1+d_{t-1}^{y})} = \frac{1}{1+d_{t-1}^{y}}$$

 $\therefore \Delta ODR$  negatively affects land price growth.

#### Vilification method 1-1. age composition effect

• whether the coefficient of **ODR** is **negative**.



# Result 1-1. age composition effect



\*OLG model does not work in commercial areas.

