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Universal Spatio-temporal Kriging 

Universal kriging to obtain best linear unbiased predictor (BLUP) 

We first clarify how universal kriging obtains BLUP as following (Goldberger, 1962). We first 

define an OLS model as follows: 

 

𝒚 = 𝑿𝜷 + 𝜺, 𝜺~𝑁(𝟎, 𝑽) (𝑎1) 

 

where, 𝒚 is a 𝑁 × 1 vector of observation variable, 𝑿 is a 𝑁 × 𝐾 matrix of explain variables, 𝜷 

is a 𝐾 × 1  vector of parameters, 𝜺  is a 𝑁 × 1 vector of OLS residuals, 𝟎 is a 𝑁 × 1 vector 

composing entries with value 0, 𝑽 is a 𝑁 × 𝑁 variance-covariance matrix. 

We also define an estimation model as follows: 

 

𝑦0 = 𝒙0
′ 𝜷 + 𝜀0, 𝐸(𝜀0𝜀) = 𝒄 (𝑎2) 

 

where, 𝑦0 is a scalar of observation value at point 0, 𝒙0 is a 𝐾 × 1 vector of explain variables at 

point 0, 𝜀0  is a scalar of residual of prediction at point 0, 𝒄 is a 𝐾 × 1 vector of covariance 

between 𝜀0 and 𝜀. 

 

Now, letting 𝒂 to be a 𝑁 × 1 of weighting vector, we have the following three formulas based 

on the characteristics of BLUP: 

 

best estimator: 

𝑚𝑖𝑛[𝑣𝑎𝑟(𝑦0 − 𝑦̂0)] (𝑎3) 

linear estimator: 

𝑦̂0 = 𝒂′𝒚 (𝑎4) 

unbiased estimator:  

𝐸(𝑦𝟎 − 𝑦̂0) = 0 (𝑎5) 

 

From the Eq. (a1), (a4), and (a5), we get the follow: 

 

𝐸(𝑦0 − 𝑦̂0) = 𝐸(𝒙𝟎
′ 𝜷 + 𝜀𝟎 − 𝒂′𝑿𝜷 − 𝒂′𝜺)

= (𝒂′𝑿 − 𝒙𝟎
′ )𝜷     

= 0                          (𝑎6)

 

  

To fulfill Eq. (a6) regardless of 𝜷, we get the follow: 
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𝒂′𝑿 − 𝒙𝟎
′ = 𝟎 (𝑎7) 

 

We can also rewrite the variance as follows: 

 

𝑣𝑎𝑟(𝑦0 − 𝑦̂0) = 𝒂′𝑽𝒂 − 𝟐𝒂′𝒄 + 𝜎2 (𝑎8) 

 

Under these conditions above, we can get the necessary and sufficient condition to make 

𝑣𝑎𝑟(𝑦∗ − 𝑦∗̂) minimize by employing Lagrange's undetermined multiplier (𝝀)  and variance of 

the regression (𝜎2). 

That is, both of the partial differences the following Eq. (a8) by 𝒂 and 𝝀 become 0:  

 

𝑓(𝒂, 𝝀) = 𝒂′𝑽𝒂 − 𝟐𝒂′𝒄 + 𝜎2 + 𝟐(𝒂′𝑿 − 𝒙𝟎
′ )𝝀 (𝑎9) 

 

𝜕𝑓(𝒂, 𝝀)
𝜕𝒂

= 2𝑽𝒂 − 2𝒄 + 2𝑿𝝀

𝜕𝑓(𝒂, 𝝀)
𝜕𝝀

= 2(𝑿′𝒂 − 𝒙𝟎)         
(𝑎10) 

 

Now, we solve the following Eq.: 

[
𝑽 𝑿
𝑿′ 0

] [
𝒂
𝝀

] = [
𝒄

𝒙𝟎
] (𝑎11) 

 

Then, we get the follow: 

 

𝒂′̂ = 𝒄′[𝑰 − 𝑽−𝟏𝑿(𝑿′𝑽−𝟏𝑿)−𝟏𝑿′]𝑽−𝟏 + 𝒙𝟎
′ (𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽 (𝑎12) 

 

Inserting Eq. (a12) to Eq. (a4), we get the follows: 

 

𝑦̂0 = 𝒂′̂𝒚                                                                                                         

   = 𝒄′[𝑰 − 𝑽−𝟏𝑿(𝑿′𝑽−𝟏𝑿)−𝟏𝑿′]𝑽−𝟏𝒚 + 𝒙𝟎
′ (𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽𝒚 (𝑎13)

 

 

Rewriting Eq. (a13) with 𝜷̂𝑮𝑳𝑺 = (𝑿′𝑽−𝟏𝑿)−𝟏𝑿′𝑽−𝟏𝒚, we finally get BLUP as follows: 

 

𝑦̂0 = 𝒙𝟎
′ 𝜷̂𝑮𝑳𝑺 + 𝒄′𝑽−𝟏(𝒚 − 𝑿𝜷̂𝑮𝑳𝑺) (𝑎14) 

 

As above, we can get BLUP through the three characteristics, namely, the best, linear, and unbiased 

estimator. However, we need to know 𝒄 and 𝑽 beforehand. Kriging allows us to estimate 𝒄 and 

𝑽. Thus, we can gain empirical BLUP (EBLUP) by structuralizing a covariogram or a covariance 

function (𝐶).  
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Spatio-temporal kriging 

We assume a Gaussian spatio-temporal random field (𝑍) defined by a spatial domain (𝒮) and 

temporal domain (𝒯). In the domain 𝒮 × 𝒯, there a sample (𝒛) with 𝑁 space-time coordinates; 

that is, 𝒛 = ((𝒔1, 𝑡1), . . . , (𝒔𝑁, 𝑡𝑁))  and (𝒔1, 𝑡1), . . . , (𝒔𝑁, 𝑡𝑁) ∈ 𝒮 × 𝒯 ⊂ ℝ2 × ℝ . Assuming second-

order stationary, where var(𝑍(𝒔, 𝑡)) < ∞, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒔 ∈ 𝒮, 𝑡 ∈ 𝒯, we define a mean function (𝜇) and a 

spatio-temporal covariance function (𝐶𝑠𝑡) as follows: 

 

𝜇(𝒔, 𝑡) = 𝐸(𝑍(𝒔, 𝑡)) (𝑏1) 

𝐶𝑠𝑡(𝒉, 𝑢) = cov(𝑍(𝒔, 𝑡), 𝑍(𝒔′, 𝑡′)) (𝑏2) 

 

where, 𝒉 is spatial distance, 𝑢  is temporal distance. for any point (𝒔, 𝑡), (𝒔′, 𝑡′) ∈ 𝒮 × 𝒯  with 

𝒉 = ‖𝒔 − 𝒔′ ‖ and 𝑢 = |𝑡 − 𝑡′|. Although it is difficult to estimate 𝐶𝑠𝑡, assuming it depends only 

the function of 𝒉 and 𝑢, spatio-temporal kriging characterizes it with semi-variogram (γ): 

 

𝐶(𝒉, 𝑢) = γ(𝒉𝑟, 𝑢𝑟) − γ(𝒉, 𝑢) (𝑏3) 

 

where, 𝒉𝑟  and 𝑢𝑟  are range of spatial distance and time lag where the value of the semi-

variogram converges. 

Theorical semi-variogram (γ0) and empirical semi-variogram (𝛾̂) are defined as follows: 

 

γ0(𝒉, 𝑢) =
1

2
𝐸 [(𝑍(𝒔, 𝑡) − 𝑍(𝒔′, 𝑡′))

2
] (𝑏4) 

𝛾̂(𝒉, 𝑢) =
1

2|ℕ(𝒉, 𝑢)|
∑ [𝑍(𝒔, 𝑡) − 𝑍( 𝒔 + 𝒉, 𝑡 + 𝑢)]2

ℕ(𝒉,𝑢)

𝑘=1

(𝑏5) 

 

where, ℕ(𝒉, 𝑢) is the number of pairs of spatio-temporal lag.  

Fitting to the empirical semi-variogram (𝛾̂), we apply the sum metric model developed by Bilonick 

(1988) and revisited by Snepvangers et al. (2003), which shows the best fit of all. In addition, the 

sum metric model allows to easily interpret the impacts of spatial distance separately: time lag, 

and their interactions (Heuvelink et al. 1996). The sum metric model composes spatial, temporal, 

and spatio-temporal terms, as follows: 

 

γ(𝒉, 𝑢) = γ𝑠(𝒉) + γ𝑡(𝑡) + γ𝑠𝑡 (√𝒉2 + (𝛼 ∙ 𝑡)2) (𝑏6) 

 

where γ𝑠, γ𝑡, and γ𝑠𝑡 are spatial, temporal, and their combined semi-variogram, respectively; 𝛼 

is geometric anisotropy ratio. 
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Universal spatio-temporal kriging for PLPs 

To evaluate the interpolation accuracy, cross-validation is an optimal way in kriging (Stone 1974; 

Geisser 1975). Cross-validation extracts a sample from a dataset whose sample size is n, in turn, to 

compare the observed value of the extracted point’s value and interpolated value from rest n-1 

samples, repeating n times (Wackernagel, 1995). This method is called the leave-one-out cross-

validation. However, the leave-one-out cross-validation requires bulky calculation loads, 

especially when the sample size is large. Hence, we apply the k-fold cross-validation, which is a 

simplified way of leave-one-out cross-validation. In the k-fold cross-validation, we divide the 

dataset into k groups randomly and repeat k times to compare the selected groups’ observed values 

and interpolated values with the rest k-1 groups. Burman (1989), Zhang (1993), and Shao (1993) 

evaluate the leave-one-out and the k-fold cross-validation in terms of accuracy and calculation 

loads. As a result, an efficient size of k is between 5 and 20. In this study, we set k as 5, considering 

the relatively large sample size. 

Applying the 5-fold cross-validation, we calculate root mean squared errors (RMSE) by 

following the steps. First, we divide all PLP samples into five groups at random according to the 

characteristics. Next, we conduct spatio-temporal kriging with the same semi-variogram model 

for a group called kriged group. Finally, we calculate RMSE to compare the interpolated values of 

the kriging group and observation values of the rest four groups, called observation group, using 

the following Eq.: 

 

𝑅𝑀𝑆𝐸 = √∑
(ln(𝑃𝐿𝑃̂𝑖) − ln(𝑃𝐿𝑃𝑖))

2

𝑁

𝑁

𝑖=1

 

 

𝑒𝑅𝑀𝑆𝐸 = 𝑒𝑅𝑁𝑆𝐸 

 

where, 𝑦̂  and 𝑦  are interpolated values in the kriged group and observation values in the 

observation group, 𝑖 and 𝑁 are each observation point and the total number of the observation 

points. When 𝑒𝑅𝑀𝑆𝐸 = 1, the interpolation has no error; 𝑒𝑅𝑀𝑆𝐸 = 1.1, the error is 10%, on 

average.  
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